Produkt zum Begriff Machine Learning:
-
Grundkurs Machine Learning (Wilmott, Paul)
Grundkurs Machine Learning , Maschinelles Lernen - alle Grundlagen! Paul Wilmott ist für seine erhellende und unterhaltsame Darstellung angewandter Mathematik bekannt. Von der linearen Regression bis zu Neuronalen Netzwerken führt er Sie durch alle Verfahren, und zwar komplett Software-unabhängig. Der Vorteil dabei: Jeder Schritt ist schwarz auf weiß zu sehen, kein Framework kann etwas "verstecken", es geht immer um die Sache selbst. Mit vielen Beispielen, Grafiken und Schritt-für-Schritt-Kästen. Für alle, die wirklich verstehen wollen, wie Maschinen lernen. Aus dem Inhalt: Lineare Regression k-Nearest Neighbors Naive Bayes-Klassifikatoren k-Means-Algorithmus Support Vector Machines Logistische Regression Selbstorganisierende Karten Entscheidungsbäume Reinforcement Learning Neuronale Netze , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 20200724, Produktform: Kartoniert, Titel der Reihe: Rheinwerk Computing##, Autoren: Wilmott, Paul, Seitenzahl/Blattzahl: 256, Themenüberschrift: COMPUTERS / General, Keyword: Hand-Buch Bücher lernen Studium Grundlagen Kurse Workshops Tutorials Wissen Anleitung Training Ausbildung; Robotik; Informatik verstehen; Programmierung programmieren; KI-Welt AI; Künstliche Intelligenz; Software-Entwicklung; Coder Coden; Neuronale Netze; Deep Learning; Mathematik, Fachschema: Informatik~Programmiersprachen~EDV / Theorie / Allgemeines, Fachkategorie: Informatik~Informationstechnik (IT), allgemeine Themen, Sprache: Deutsch, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Thema: Verstehen, Text Sprache: ger, Verlag: Rheinwerk Verlag GmbH, Verlag: Rheinwerk Verlag GmbH, Breite: 175, Höhe: 17, Gewicht: 480, Produktform: Klappenbroschur, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0006, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 2327150
Preis: 29.90 € | Versand*: 0 € -
Grunert, Philipp: Machine Learning und Neuronale Netze
Machine Learning und Neuronale Netze , Dieses Buch richtet sich sowohl an Softwareentwickler als auch Programmiereinsteiger und bietet eine fundierte Einführung in Machine Learning und Neuronale Netze . Alle notwendigen Grundlagen werden erklärt: Mathematisches Hintergrundwissen, Vorhersagemodelle, Programmiergrundlagen in Python . Fundierte Erklärungen zu ML und Neuronalen Netzen anhand vieler Beispiele . Zahlreiche Übungsaufgaben helfen das Erlernte zu festigen und selbst anzuwenden . Zielgruppe: Softwareentwickler, Programmierer, Mathematiker . Platzierung: Softwareentwicklung/Programmierung, Künstliche Intelligenz , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 26.99 € | Versand*: 0 € -
Bartok, Larissa: Anwendung statistischer und Machine-Learning-Methoden für Fragestellungen zu Studienerfolg
Anwendung statistischer und Machine-Learning-Methoden für Fragestellungen zu Studienerfolg , Analytics-Instrumente können dabei helfen, mehr über den Lern- und Studienerfolg von Studierenden herauszufinden und geeignete Maßnahmen zur Unterstützung von Studierenden abzuleiten. Zwei Projekte, die sich Fragen zum Thema Studienerfolg widmen, wurden vom österreichischen BMBWF im Rahmen der Ausschreibung "Digitale und soziale Transformation in der Hochschulbildung" kofinanziert. Die beiden Projekte "Learning Analytics- Studierende im Fokus" und "PASSt - Predictive Analytics Services für Studienerfolgsmanagement" fokussieren auf unterschiedliche Handlungsfelder und wurden zur Generierung von Synergieeffekten konzeptionell verzahnt, indem generische Herausforderungen gemeinsam bearbeitet und Lessons-Learned diskutiert wurden. Die Erkenntnisse der gemeinsamen Arbeitsgruppe mündeten in diese Arbeit, die Rahmen- und Gelingensbedingungen von Analytics-Projekten thematisiert, und anhand von exemplarischen Anwendungsszenarien eine Unterstützung bei der Implementierung bieten kann. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 27.90 € | Versand*: 0 € -
Raschka, Sebastian: Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn
Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn , Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und Matplotlib Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert. Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning. Ein sicherer Umgang mit Python wird vorausgesetzt. Aus dem Inhalt: Trainieren von Lernalgorithmen und Implementierung in Python Gängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random Forest Natural Language Processing zur Klassifizierung von Filmbewertungen Clusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren Daten Deep-Learning-Verfahren für die Bilderkennung Datenkomprimierung durch Dimensionsreduktion Training Neuronaler Netze und GANs mit TensorFlow 2 Kombination verschiedener Modelle für das Ensemble Learning Einbettung von Machine-Learning-Modellen in Webanwendungen Stimmungsanalyse in Social Networks Modellierung sequenzieller Daten durch rekurrente Neuronale Netze Reinforcement Learning und Implementierung von Q-Learning-Algorithmen , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 49.99 € | Versand*: 0 €
-
Welchen Abschluss benötigt man, um eine Machine Learning Engineerin zu werden?
Um eine Machine Learning Engineerin zu werden, benötigt man in der Regel einen Bachelor- oder Masterabschluss in Informatik, Mathematik, Statistik oder einem ähnlichen Fachgebiet. Zusätzlich ist es von Vorteil, Erfahrungen in den Bereichen Datenanalyse, Programmierung und maschinelles Lernen zu haben. Es gibt jedoch auch alternative Bildungswege, wie zum Beispiel Bootcamps oder Online-Kurse, die praktische Kenntnisse in Machine Learning vermitteln können.
-
Hat Machine Learning wirklich etwas mit künstlicher Intelligenz zu tun?
Ja, Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen oder Entscheidungen zu treffen. Machine Learning ist eine Methode, um künstliche Intelligenz zu erreichen, indem Computer in der Lage sind, Aufgaben zu erlernen und auszuführen, für die normalerweise menschliche Intelligenz erforderlich ist.
-
Was sind die verschiedenen Anwendungen von Machine Learning in der heutigen Technologieindustrie?
Machine Learning wird in der heutigen Technologieindustrie für die personalisierte Werbung, die Bild- und Spracherkennung sowie für die Betrugserkennung und -prävention eingesetzt. Es wird auch für die automatisierte Übersetzung, die Gesichtserkennung und die Empfehlungssysteme verwendet. Zudem findet Machine Learning Anwendung in der medizinischen Diagnose, der autonomen Fahrzeugtechnologie und der Finanzanalyse.
-
Was sind die gängigsten Anwendungsbereiche von Machine Learning in der heutigen Technologiebranche?
Die gängigsten Anwendungsbereiche von Machine Learning in der Technologiebranche sind Personalisierung von Inhalten und Empfehlungssysteme, Betrugserkennung und Sicherheit sowie Prognoseanalysen und Optimierung von Geschäftsprozessen. Machine Learning wird auch für Bild- und Spracherkennung, medizinische Diagnosen und autonome Fahrzeuge eingesetzt. Insgesamt wird Machine Learning in vielen Bereichen eingesetzt, um Daten zu analysieren, Muster zu erkennen und Vorhersagen zu treffen.
Ähnliche Suchbegriffe für Machine Learning:
-
Ekman, Magnus: Learning Deep Learning
Learning Deep Learning , NVIDIA's Full-Color Guide to Deep Learning: All StudentsNeed to Get Started and Get Results Learning Deep Learning is a complete guide to DL.Illuminating both the core concepts and the hands-on programming techniquesneeded to succeed, this book suits seasoned developers, data scientists,analysts, but also those with no prior machine learning or statisticsexperience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers,Magnus Ekman shows how to use them to build advanced architectures, includingthe Transformer. He describes how these concepts are used to build modernnetworks for computer vision and natural language processing (NLP), includingMask R-CNN, GPT, and BERT. And he explains how a natural language translatorand a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples usingTensorFlow with Keras. Corresponding PyTorch examples are provided online, andthe book thereby covers the two dominating Python libraries for DL used inindustry and academia. He concludes with an introduction to neural architecturesearch (NAS), exploring important ethical issues and providing resources forfurther learning. Exploreand master core concepts: perceptrons, gradient-based learning, sigmoidneurons, and back propagation See how DL frameworks make it easier to developmore complicated and useful neural networks Discover how convolutional neuralnetworks (CNNs) revolutionize image classification and analysis Apply recurrentneural networks (RNNs) and long short-term memory (LSTM) to text and othervariable-length sequences Master NLP with sequence-to-sequence networks and theTransformer architecture Build applications for natural language translation andimage captioning , >
Preis: 49.28 € | Versand*: 0 € -
Easy Learning
Kinder-Wanduhr "Easy Learning", Durchmesser 30 cm, geräuscharm
Preis: 23.96 € | Versand*: 6.96 € -
Handbook Transdisciplinary Learning
Handbook Transdisciplinary Learning , What is transdisciplinarity - and what are its methods? How does a living lab work? What is the purpose of citizen science, student-organized teaching and cooperative education? This handbook unpacks key terms and concepts to describe the range of transdisciplinary learning in the context of academic education. Transdisciplinary learning turns out to be a comprehensive innovation process in response to the major global challenges such as climate change, urbanization or migration. A reference work for students, lecturers, scientists, and anyone wanting to understand the profound changes in higher education. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 202308, Produktform: Kartoniert, Beilage: Kt, Titel der Reihe: Hochschulbildung: Lehre und Forschung#6#, Redaktion: Philipp, Thorsten~Schmohl, Tobias, Seitenzahl/Blattzahl: 422, Abbildungen: 10 Farbabbildungen, Themenüberschrift: EDUCATION / Organizations & Institutions, Keyword: Education; Educational Research; Interdisciplinarity; Pedagogy; Philosophy of Science; Sociology of Education; Theory of Education; Transdisciplinarity; Transfer; Transformative Science; University; University Teaching, Fachschema: Bildungssystem~Bildungswesen~Pädagogik / Theorie, Philosophie, Anthropologie~Studium, Fachkategorie: Bildungssysteme und -strukturen~Pädagogik: Theorie und Philosopie~Hochschulbildung, Fort- und Weiterbildung~Bildungswesen: Organisation und Verwaltung~Fachspezifischer Unterricht, Warengruppe: TB/Bildungswesen (Schule/Hochschule), Fachkategorie: Schule und Lernen: Philosophie und Ethik, Thema: Verstehen, Text Sprache: eng, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Transcript Verlag, Verlag: Transcript Verlag, Verlag: Gost, Roswitha, u. Karin Werner, Länge: 225, Breite: 147, Höhe: 30, Gewicht: 662, Produktform: Kartoniert, Genre: Sozialwissenschaften/Recht/Wirtschaft, Genre: Sozialwissenschaften/Recht/Wirtschaft, Herkunftsland: DEUTSCHLAND (DE), Katalog: Gesamtkatalog, Katalog: Internationale Lagertitel, Katalog: internationale Titel, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0004, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Lagerartikel, Unterkatalog: Taschenbuch, WolkenId: 2879657
Preis: 31.42 € | Versand*: 0 € -
Visible Learning 2.0
Visible Learning 2.0 , Als das Original von Visible Learning im Jahr 2008 veröffentlicht wurde, stellte es sich sofort als eine verlegerische Sensation heraus. Das Interesse an dem Buch war beispiellos und innerhalb weniger Tage war es ausverkauft. Im TES (Times Educational Supplement) wurde es als "der Heilige Gral des Unterrichts" bezeichnet. Die Forschung, auf die die vorliegende Weiterentwicklung von Visible Learning basiert, stützt sich inzwischen auf mehr als 2.100 Meta-Analysen (mehr als doppelt so viele wie in der ursprünglichen Veröffentlichung mit ca. 800 Meta-Analysen), die mehr als 130.000 Studien umfassen und an denen geschätzt mehr als 400 Millionen Lernende aus aller Welt teilgenommen haben. Dieses Buch ist jedoch mehr als nur eine Neuauflage: Es ist eine Weiterentwicklung, die das große Ganze beleuchtet, die Umsetzung von Visible Learning in den Schulen reflektiert, wie es verstanden - und manchmal auch missverstanden - wurde und welche Richtung die Forschung in Zukunft einschlagen sollte. Visible Learning 2.0 bekräftigt John Hatties Wunsch, nicht nur das in den Blick zu nehmen, was funktioniert, sondern auch und vor allem das, was am besten funktioniert, indem er entscheidende Fragen stellt wie: Warum ist die derzeitige Grammatik des Schulunterrichts in so vielen Klassenzimmern so fest verankert und wie können wir sie verbessern? Warum ist die Lernentwicklungskurve für Lehrpersonen nach den ersten Berufsjahren so flach? Wie können wir die Denkweise von Lehrpersonen so entwickeln, dass sie sich mehr auf das Lernen und Zuhören konzentrieren (und weniger auf das Lehren und Sprechen)? Wie können wir Forschungsergebnisse in die Diskussionen der Schulen und der Kollegien bringen? Zu den besprochenen Bereichen gehören: - Die Forschungsbasis und die Reaktionen auf Visible Learning - Das Visible Learning Modell - Die bewusste Abstimmung von Lern- und Lehrstrategien - Der Einfluss des Elternhauses, der Lernenden, der Lehrpersonen, der Klassenzimmer, der Schulen, der Lehrpläne auf die Lernleistung. - Der Einfluss von Technologie Aufbauend auf dem Erfolg des Originals erweitert diese mit Spannung erwartete Weiterführung John Hatties Modell des Lehrens und Lernens auf der Grundlage von Einflussgrößen und ist eine unverzichtbare Lektüre für alle, die im Bildungsbereich tätig sind - sei es als Forschende, Lehrpersonen, Lernende, Schulleitungen, Lehrerbildnerinnen und Lehrerbildner oder politische Entscheidungsträger. John Hattie ist emeritierter Professor an der Graduate School of Education der Universität von Melbourne, Australien. Er ist einer der weltweit bekanntesten und meistgelesenen Bildungsexperten. Seine Bücher zu Visible Learning wurden in 29 Sprachen übersetzt und über 2 Millionen Mal verkauft. Stephan Wernke vertrat die Professur für Schulpädagogik an der Universität Vechta und ist wissenschaftlicher Mitarbeiter in der Schulpädagogik und Allgemeinen Didaktik an der Carl von Ossietzky Universität in Oldenburg. Er hat an mehreren Übersetzungen von John Hatties Büchern mitgewirkt (u. a. Lernen sichtbar machen). Klaus Zierer ist Ordinarius für Schulpädagogik an der Universität Augsburg und Associated Research Fellow am Centre on Skills, Knowledge and Organisational Performance (SKOPE) der University of Oxford. Er hat bereits mehrere Bücher von John Hattie ins Deutsche übertragen (u. a. Lernen sichtbar machen) und auch auf Englisch mit ihm publiziert (u.a. 10 Mindframes for Visible Learning). , >
Preis: 32.00 € | Versand*: 0 €
-
Was sind die grundlegenden Anwendungen von Machine Learning in der heutigen Technologie?
Die grundlegenden Anwendungen von Machine Learning in der heutigen Technologie sind die Personalisierung von Diensten und Produktempfehlungen, die Vorhersage von Trends und Verhaltensweisen sowie die Automatisierung von Prozessen und Entscheidungsfindungen. Machine Learning wird auch in der Bild- und Spracherkennung, medizinischen Diagnosen und autonomem Fahren eingesetzt. Es ermöglicht Unternehmen, Daten effizient zu analysieren und Muster zu identifizieren, um fundierte Entscheidungen zu treffen und Innovationen voranzutreiben.
-
Wie revolutioniert Machine Learning die Art und Weise, wie wir Daten analysieren und Muster erkennen?
Machine Learning ermöglicht es, große Mengen von Daten automatisch zu analysieren und Muster zu erkennen, die für menschliche Analysten schwer zu erkennen wären. Durch den Einsatz von Algorithmen kann Machine Learning komplexe Zusammenhänge in den Daten identifizieren und Vorhersagen treffen. Dies revolutioniert die Art und Weise, wie wir Daten analysieren, indem es schneller, effizienter und präziser ist als herkömmliche Methoden.
-
Was sind die Schlüsselfaktoren für den Erfolg von Machine Learning-Algorithmen in der heutigen datengetriebenen Welt?
Die Qualität und Menge der Trainingsdaten sind entscheidend für den Erfolg von Machine Learning-Algorithmen. Ein guter Algorithmus, der die Daten effizient verarbeiten kann, ist ebenfalls wichtig. Zudem spielt die kontinuierliche Optimierung und Anpassung der Algorithmen an neue Daten eine entscheidende Rolle.
-
Was sind die verschiedenen Anwendungen von Machine Learning in der heutigen Gesellschaft und wie beeinflussen sie unser tägliches Leben?
Machine Learning wird in der Medizin verwendet, um Krankheiten zu diagnostizieren und Behandlungspläne zu erstellen. In der Finanzbranche hilft es bei der Betrugsprävention und der Risikobewertung. Im Alltag beeinflusst es unser Leben durch personalisierte Werbung, Empfehlungssysteme und Spracherkennungstechnologien.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.